
NASA Contractor Report 195056

ICASE Report No. 95-16

ICASE
IMPLEMENTATION OF A PARALLEL UNSTRUCTURED
EULER SOLVER ON THE CM-5

E. Morano
D. J. Mavriplis

Contract No. NAS1-19480
March 1995

19950425 053
Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

liS R A °Perated °y Universities Space Research Association
DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

IMPLEMENTATION OF A PARALLEL
UNSTRUCTURED EULER SOLVER

ON THE CM-5*

E. Morano and D. J. Mavriplis

Institute for Computer Applications in Science and Engineering

MS 132C, NASA Langley Research Center

Hampton, VA 23681-0001 USA

ABSTRACT

An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corpo-

ration Connection Machine 5, distributed memory computer with vectorizing capability. In

this paper, the SIMD strategy is employed through the use of the CM Fortran language and

the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated

and the overall efficiency of the parallel flow solver is discussed .

Accesion For

NTIS CRA&I
DTiC TAB
Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist

m
Avail and /or

Special

"This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. The first
author was also partially supported by INRIA, "Region Provence-Alpes-Cote d'Azur" (France).

1 INTRODUCTION
Computer technology has grown rapidly over the last several years especially with regard to parallel archi-
tectures. Such machines are becoming useful for solving very large computational fluid dynamics problems,
such as inviscid and viscous three dimensional flows about complex configurations, using upwards of one

million grid points.
Since many different architectures have been developed and are available, efficient solution techniques and

software are required which are adapted to the computational problem and also to the particular machine.
There are essentially two requirements: the software must be parallelizable and here, also vectorizable, since
each processing node of the CM-5 partition contains 4 vector units (VU's). For example, a Jacobi cycle
is suitable, but a Gauss-Seidel iteration is not inherently vectorizable. This vectorization is provided by
the compiler and does not require any explicit colored-type implementation. Moreover, the algorithm must
also be efficient enough [1, 2], that is, must require a minimum number of operations to obtain a converged
solution. In the case of unstructured meshes, only a few algorithms satisfy these requirements. In this work,
it will be shown how a multistage explicit 3D Euler solver may be implemented on the CM-5 machine.

The CM-5 architecture can be used as a Single Instruction Multiple Data (SIMD) machine or as a
Multiple Instruction Multiple Data (MIMD) machine. In the first approach each processing node performs
the same instructions but on different data elements, while in the second approach, each processing node
executes different instructions on different data sets. The SIMD approach on the CM-5 will be studied in
this paper. This is done by making use of the CM Fortran (CMF) language. This language is an extension
of the Fortran 90 language and has the particularity of treating entire arrays as variables. It provides a much
more compact way of programming. Moreover, on the CM-5 computer, the programmer may access a large
set of libraries: CM Fortran Utility Library [3] and Connection Machine Scientific Software Library (CMSSL
[4]) for CM Fortran [5]. The first library provides subroutines such as "CMF_fe_arrayirom/to_CM" to use,
or to produce, CM-objects instead of writing lower-level software. The second library is related to the use of
scientific functions such as the manipulation of CM-arrays: L2 vector/matrix norms and the gather/scatter
operations for sparse matrices, for example, which are required here.

While this programming model gives the illusion of an SIMD architecture, the global CMF code is in fact
transformed by the compiler into an MIMD program which is then run simultaneously on each processor.

Since the memory is distributed on this machine, each VU has its own memory where the data elements
are located and the distribution of the data elements over the vector units can strongly affect the overall
performance, because of the time required for the interprocessor communication. Therefore, a partitioner
provided in the CMSSL library, developed by Johan [4. 6], will be used with a slight modification.

All codes are compiled using CMF 2.1.1.2 and CMSSL 3.2. They are run on a CM-5 computer with 128
processing nodes (512 VU's) under CMOST 7.3 Final 1 Rev 3. All the examples run on the latter system
are timeshared for the 32 and 64 processing node executions, while they are run in dedicated mode for the
128 processing node executions: this allows the use of the entire available memory (3.48 GBytes) for a single
job. Each 32 node partition represents 891 MBytes of memory, the difference between the original 1 GByte
and the 891 MBytes is due to the overhead. All reported timings correspond to CM-Busy times. This work
was introduced in [7] with slight differences.

2 UNSTRUCTURED SOLVER
The basis for the implementation is a three dimensional unstructured single-grid Euler solver. Unstructured
meshes provide the most flexible means for the discretization of complex domains and for adaptation of
the mesh to flow features. Since an explicit scheme may be considered as the product of a sparse matrix
by a vector, unstructured meshes result in (very) large sparse matrices and therefore require the use of
gather/scatter operations to enable vectorization and/or parallelization.

Venkatakrishnan et al. in [8] implement a mesh-vertex finite volume upwind scheme for solving the Euler
equations on triangular unstructured meshes on the Intel iPSC/860, an MIMD computer. A four-stage
Runge-Kutta scheme is used to advance the solution in time. Farhat et al. in [9] propose the discretization of
the 2D Navier-Stokes equations using a second order accurate monotonic upwind scheme for conservation laws
(MUSCL) on fully unstructured grids. The spatial approximation combines an upwind finite volume method
for the discretization of the convective fluxes with a Galerkin finite element method for the discretization
of the diffusive fluxes. The time integration is performed through an explicit second order Runge-Kutta
scheme and the code is implemented on a CM-2 computer. Johan et al. in [10, 6] solve the 3D Euler
equations with a finite element program implemented on the CM-5 in CM Fortran. The variational form is
based on the Galerkin/least-squares formulation. They use an implicit scheme to converge the solution to
steady state. A matrix-free GMRES technique is used to solve the linear system at each time-step. More
recently. Farhat et al. in [11] proposed the evaluation of different massively parallel architectures through the
simulation of unsteady and steady viscous flows on the iPSC-860, the CM-5 and the KSR-1 computers. The
discretization relies on a mixed finite element/finite volume formulation on unstructured meshes. The spatial
approximation combines a Galerkin approximation for the viscous terms and an upwind Roe scheme for the
convective fluxes. Second order solutions are provided through a MUSCL (Monotonic Upwind Scheme for
Conservative Laws) approach. The time integration is achieved through a 3 stage variant of the Runge-Kutta
method. Message Passing codes are implemented on the machines and an SIMD version of the solver is also
implemented on the CM-5. The performances confirm the results presented in [7]: 107 MFlops on a 392161
edge based unstructured 2D mesh using 32 processing nodes.

This work was already partially introduced in [7] and the sequential version of this algorithm has been
already reported in [12]. A parallel version was implemented on the Intel iPSC/860 hypercube using the
PARTI primitives [13]. The equations are discretized on the unstructured mesh using a Galerkin finite-
element formulation. The flow variables are stored at the vertices of the mesh, and piecewise linear flux
functions are assumed over the individual tetrahedra of the mesh. The scheme is a so-called central differ-
encing scheme [14]. Artificial dissipation, constructed as a blend of a Laplacian and biharmonic operator, is
added to maintain stability. The main data-structure of this code is an edge-based data-structure. Residuals
are constructed by executing loops over the edges of the mesh. At mesh boundaries, an additional loop
over the triangular faces which form the boundary is then performed. The resulting spatially discretized
equations must be integrated in time to obtain the steady-state solution. This is achieved using a 5-stage
Runge-Kutta scheme. More details of this scheme are available in [12].

3 PARTITIONING OF DATA
As mentioned in the introduction, the memory is distributed over all the VU's (each processing node has
4 VU's). Thus, it is necessary to understand how, in the processors, the memory is managed and how the
vectorization is performed, and both must be worked out together. These will be illustrated through the

following example.
An array containing 2800 data elements is to be distributed on a CM-5 comprising 32 processing nodes,

that is 128 vector units, each of them managing its own memory. The quotient of the division of 2800 by
128, i.e. 21. should be the number of data per VU. Actually, in order to distribute the data, two features

are available.

• There is what can be called "the rule of 8". The length of the pipeline of a vector unit is equal to 8,
thus the size of the data to be distributed on each VU has to be a multiple of 8. 21 is obviously not
a multiple of 8 and the next number multiple of 8 is 24. The quotient of the division of 2800 by 24,
i.e. 116, represent the number of VU's that will contain 24 data, the remaining data (2800-(116*24) =
16) goes in the 117-th VU. As explained in [4], the first 24 data will be allocated to the first VU, the
second 24 data to the second VU and so forth... In this example only 117 VU's are used, instead of

128, and the array is not large enough to fit the machine correctly. However, this problem disappears
for larger meshes.

• Another feature of the last released CMSSL library is that this rule of 8 is no longer mandatory to
ensure proper vectorization. The only requirement is that the length of each-data set in each VU be a
multiple of a positive power of 2. The previous example is considered as follows: 21 is not a multiple
of any positive power of 2, while 22 is. Hence, the number of VU's containing 22 data is 127, the
remaining 6 data being assigned to the 128th VU. In this case, all the VU's are being used which
results in an excess of communication time with respect to the computational time. Here again, this
problem tends to disappear when the size of the mesh increases for a given architecture. In order to
use this option, the partitioner and the solver software must be compiled with the "-nopadding" option
(for further details see in [15]).

The partitioner provided in the CMSSL library is designed to partition Finite Element meshes: for clarity
a 2D mesh, built with triangles, is considered. In order to use the partitioner, the graph to be partitioned
needs to be described. In the CMSSL library, since the triangles are partitioned, the graph considered is the
dual to the triangulation where each triangle is represented as a vertex in the graph. The graph is defined
by the array "idual":

idual(m,n) = • the number of the triangle that shares the face m with the triangle n.
• 0 if there is no neighbour (i.e. at the boundary).

In the present case, the vertices of the triangulation are partitioned rather than the triangles. Therefore,
the graph to be partitioned is the triangulation itself. The graph is thus described in terms of nodes connected
by edges. First to be determined is the maximum number of neighbors a node may have (maxmgh) all over
the mesh, then the actual number of neighbors for each node (act_ngh). The graph is built using the array
"idual" defined as:

idual(m,n) = • the number of the edge that shares the node m with the edge n.
• 0 if n > act _ngh.

The partitioning is achieved through the use of a parallel recursive spectral bisection (RSB) implemented
in CMF by Johan et al. [6]. The call of the routine "Partition_Mesh" will provide a new numbering of
the nodes of the mesh through an array of permutation. It is important to note that the RSB partitioner
implemented in the CMSSL library does not necessarily ensure a unique solution. Therefore, two runs on
the same graph usually produce two slightly different results [6].

Since most of the computation is based upon edge loops, edges are the primary representation of the
mesh and, once the permutation array is obtained, the edges are partitioned. An edge is represented by its
origin and extremity. If both nodes of an edge belong to the same processor, then the edge is allocated to
that same processor. If the two end nodes of an edge reside in different processors, the edge is then allocated
to one of the two processors. Since either processor can be chosen, at this point, the edges are assigned in a
manner which ensures even size partitions of edges for each processor. For example, in Fig.l, is shown the
case of a 2D mesh, and how, from the original mesh and through the edges, the renumbering is achieved.
The mesh comprises 25 nodes and 56 edges. The "PartitionJVlesh" routine provides then 3 partitions with 8
nodes each and 1 partition with 1 node. The boundary between each partition is depicted by the thick dash
line.

In an unstructured mesh, the way the edges are to be distributed depends strongly on the connectivity of
each node (number of connecting neighbors). Therefore, one processor may receive a greater number of edges
than another. This results in non-equal length sets of data. In order to ensure proper data distribution and
to provide maximum computational rates, dummy data elements called "zeros", since they are actually zero

@ Partition I «Hi Partition IV

H Partition II Jk^ Partition III

Figure 1: Partitioning Example.

valued data elements during the computation, are added to each partition. When the VU pipeline length is
8, it is important to employ partitions in which the data sets are multiples of 8, in order to maximize the VU
computational rates. In general, the partitions will not naturally be divisible by 8. Therefore, the "zeros"
are added such that the number of edges per processor be divisible by 8.

A similar partitioning is carried out for the triangular boundary faces, since these form the basis of the
boundary condition loops. Since the number of boundary faces is smaller than the number of mesh edges
(see Table 2.B for example) they do not affect the computation significantly. Yet, it is useful to note that
each face (actually a face is represented by a tetrahedron, since the interior node needs to be known for
computational purposes) is comprised of 4 nodes. Each of these nodes may be on a different processor, hence
the number of "zeros" to be added per node is proportionally greater than for the edges. This number may
be regarded as much smaller than the number of edges but is not negligible.

The number of nodes is obviously not affected by the previous methods and remains the same as before

the partitioning.
The following particular ratio is to be of some importance:

, .. cut .edqes .part
edge-ratio = maZedges '

where cut.edges-part is the number of cut edges, divided by the number of partitions, and max.edges the
maximum number of edges strictly included in a processor. The quantity cut.edges.part represents a good
metric of the interprocessor communication time and max.edges a good metric of the pure computational
time. This ratio will govern the overall performance of the code. A similar facejratio may have been
studied but was not considered for clarity purpose. The only cases where such a ratio could be considered
significant is when the faces represent more than 20 % of the computational operations. This happens when
small meshes are distributed on a large number of processors which obviously becomes rapidly inefficient
and therefore need be neither used nor studied.

Several results obtained with the partitioner applied to an ONERA M6 wing mesh (Fig.8) and a mesh
over an aircraft configuration (Fig.10) are discussed. The meshes being used are described in Table 1.

Tables 2 to 4, showing partitioner execution summary, are to be read as follows:

• The size of the meshes is expressed as the number of nodes, edges (the most relevant data) and
boundary faces before being partitioned.

• The memory required to run the code is obtained by including "isys = "system('cmps')" as the last
command line in the code. The result of the sum of the VTJ heap and stack is expressed in KBytes
per VU. In order to obtain the memory allocated to run the code on the entire machine it is necessary
to multiply the value by the number of VU's (a division by 1024 gives the value in MBytes).

• CPU times are measured for the execution of the "Partition_Mesh" CMSSL subroutine and for the
total partitioning process, that is for "PartitionJVIesh" and for renumbering and reordering the edges
and the faces (I/O operations are not considered).

• The edge-ratio: for a given geometry, it is expected that the statement "the bigger the mesh the
better" will hold. Indeed, the density of nodes increases faster than the interprocessor boundary size;
hence, the value of edge-ratio decreases for larger meshes. Therefore more CPU time will be spent in
the computation compared to the communication, and the global performance will improve.

• The resulting number of edges and faces after the partitioning process (due to the addition of the
"zeros").

• The percentage of the number of faces over the number of edges.

One particular feature of the CM Fortran available on the CM-5 is that it supports a dynamic array
allocation. This feature has been used in the last release of the code used here to partition the data. The
interest of the use of the dynamic array allocation resides in a more flexible way to run the code. It becomes
unnecessary to re-compile it prior to each run. The main difficulty concerns the precise measurement of the
memory through the use of the "cmps" command. Indeed, this command gives the status of the system
when requested, hence the possible lack of precision due to the fact that some arrays might not be allocated
at this time.

Tables 2.A to 2.E show the partitioner execution summary for the 32 node configuration computer
respectively for:

1. The rule of 8.

2. The rule of 8 with the "low-storage" option, an option that allows a smaller memory allocation re-
quirement than the "default-storage" option, (the latter of which was used exclusively in [7]. However,
the "low-storage" option requires more CPU time (see [15]).

3. The "-nopadding" option.

4. The "-nopadding" and "low-storage" options.

Tables 3 and 4 depict the results for the 64 and 128 node configuration respectively.
As for memory measurements, the results in Table 2.A and the results reported in [7] appear slightly

different but nevertheless consistent. This difference may result from the present use of the dynamic array
allocation (in [7] this feature was not used), but also from the new operating system, the new CMSSL library
and maybe from the non-uniqueness of the solution of the "PartitionJVIesh" subroutine (i.e. the resulting
mesh is possibly larger or smaller than those shown in [7]). The increase of the number of edges ranges from
0.7 % to 21 %. The larger the mesh on a given configuration the lower the increase because the density of

inner processor edges is larger. For a given mesh the larger the number of processing nodes the larger the
increase since the same number of edges has to distributed on a larger number of processors. The increase
of the number of faces follows the same rules but at a much higher degree (from 98% to as high as 287 %
!), since a face can be shared by as many as 4 different VU's (this case does not generally appear and 3
seems to be the maximum). The "PartitionJVTesh" subroutine requires 20-50 %' of the total partitioning
process. This is explained by the fact that the code is not entirely parallelized. Complete parallelization
would require a large amount of communication and dramatic reductions in CPU time cannot be expected.
When the "low storage" option is used, the "Partition_Mesh" subroutine requires 50 % more time, but the
memory requirements are only 65 % as of those required as with the "default storage" option.

In Fig.2. the memory requirements with respect to the number of edges for each available option on
the 32 node machine are depicted. A simple extrapolation (curves are linear) shows what the 2403874 edge
mesh would require in terms of memory and time. The memory requirement can be attained with the 64
node machine using the "low storage" option with either the "-nopadding" or the "rule of 8" options, which
requires 1.39 or 1.44 GBytes respectively. Although the CPU time does not appear to be a limitation a
priori, it is obviously preferable, when possible, to use the "default storage" option. The time required
to partition the 2403874 edge mesh cannot be extrapolated as easily since partitioning the same mesh on a
larger architecture increases communication but provides better computational performance, and the balance
between these two factors is not a priori known. As shown in [6], time is not a linear function of the number
of processing nodes. Therefore, the options are in favor (slightly !) of the "low storage" and the "-nopadding"

for the memory requirement.
The results for the 64 node runs are presented in Table 3. The memory requirement for the 2403874 edge

mesh, with 1.32 GBytes, proves the previous estimation to be valid. The same type of results are shown on
Table 4 for the 128 node partition, where no limitation was found for the presented meshes.

It is clear, and expected, that the "edge_ratio", for a given geometry, decreases when the mesh gets larger.
Yet, this "edge_ratio" increases when the configuration of the machine gets larger. Indeed, a given mesh
is partitioned on a greater number of processors thus creating more interprocessor boundaries. Therefore,
it is expected that the overall computational performance will be "optimal" when this "edgejatio" will be
minimum. As for the aircraft configuration, despite a greater number of edges (697992) versus the second
largest M6 wing (353476), a great improvement in terms of performance cannot be expected since their
respective values of the "edge_ratio" are similar.

4 PERFORMANCE RESULTS

In the Tables 5 to 8 results are presented as follows:

• Meshes are represented by their number of nodes, edges and faces.

• The memory requirement is expressed in KBytes per VU. This is obtained through the command line
"isys = system('cmps')" as for the partitioner. Since this code does not use dynamic array allocation
memory, the memory measurements should be more accurate than those of the partitioner.

• The CPU time entry contains two columns: the first one represents only the computational time
whereas the second takes into account the computational time and the communication time which
is included in the gather/scatter operations. These operations are performed through the use of the
following routines available in the CMSSL library [4]:

- "Part_Gather/Scatter" for single dimension arrays,

- "Part_Vector_Gather/Scatter" for multiple dimension arrays.

The CPU time is expressed as an average computed over 100 iterations.

7

• The overall performance of the code is expressed in MFlops.

As for memory requirements, here again, the results in Table 6.A are consistent with those that appear
in [7]. The previous remarks concerning the differences related to the partitioner still apply.

As seen in Table 5, computations done directly without partitioning the meshes reflect that partitioning
does improve the overall performance of the code. For example, although the non-partitioned 353476 edge
mesh is smaller than the partitioned 360448 edge mesh (addition of "zero-edges" and "zero-faces" in the
partitioned mesh) the memory allocation needed by the gather/scatter routines is larger. Indeed, since the
nodes are randomly distributed among the processors, the number of cut edges is larger and the gather
process produces more duplications. The computational times are of the same magnitude for both meshes.
On the other hand, the total time shows a 7-fold increase resulting in low overall performance.

Even in the partitioned cases, shown in Tables 6 to 8, the computational time is around 10 times smaller
than the total time. Therefore, pure computational performance of about 1 GFlops are dramatically reduced
to 104 MFlops. The communication time in all these cases is much larger than the computation time. Thus,
the overall computational rates of 20 MFlops per processor achieved by Johan [6] cannot be expected nor
achieved. Yet, an average of 0.8 Mflops per processor attained here are similar to those presented in [11].
Indeed, the codes used in [7] and [11] are somehow similar with respect to the discretization and the time
marching algorithm.

Table 9 depicts the execution summary of the code during one iteration, routine by routine where the
computational performance is pointed out: STEP represents the computation of the time step, DEFLUX (D)
the artificial diffusion, DEFLUX (C) the convection fluxes, PSMOO the residual smoothing and MONITR
the computation of the RMS average of all flow field residuals. The values are given in the first Runge-
Kutta step for DEFLUX (D). DEFLUX (C) and PSMOO. In the PSMOO subroutine, two iterations of a
Jacobi iterative process (implicit residual averaging, see [16]) are performed over the whole mesh and the
result is the average. STEP and MONITR are calculated respectively at the beginning and at the end of
the global iteration. The mesh used is the partitioned 360448 edge mesh of the M6 wing. The various
computations are performed over edges, faces and nodes. This table shows the CPU times required for the
gather operation, the computation and the total time including gather, computation and scatter. The gather
bandwidth for double precision data is calculated by dividing the number of bytes transferred (either within
a processor or between processors) by the time used to do so. For example, the number of transferred data
from an array A(5,mnode) to an array GA(2,5,medge), where 5 is the number of variables in 3D, mnode
the number of nodes and medge the number of edges, amounts to a total of 2 x 5 x medge x 8 bytes.
The gather bandwidth per processing node for the edges results in 15 Mbytes/s for each routine. When
the performances obtained with the computational time only (MFlops (C)) are compared to the total time
(MFlops (T)), it is easily seen that performance considerably deteriorates in the particular subroutines which
include large portions of communication. The pure computational performance is pointed out since more
than 1 GFlops for computation only are obtained. Therefore, these results show that the compiler provides
a good vectorization of the code and that the communication rates are similar to those achieved by Johan
in [6] which ensures that the meshes are well partitioned. The deterioration is due to the large number of
communication steps used in each routine.

Fig.3 shows the memory requirement of the solver, expressed in MBytes, with respect to the number of
edges of each mesh, for the three possible configurations of the machine (32, 64 and 128 processing nodes).
For the 32 node configuration, since the 2403874 edge mesh could not be neither partitioned nor run with
the solver, an extrapolation has been performed. The theoretical size of the partitioned mesh is extrapolated
from the results obtained in Table 2.E and results in a 2432489 edge mesh. Then, its memory requirement is
extrapolated from results obtained in Table 6.C. It shows clearly that such a computation is possible neither
with the 32 node machine nor with the 64 node configuration. Indeed, the double and triple dash lines show
respectively the available memory for the 32 and the 64 node configuration. It is also interesting to note that
the 3 curves are almost the same, demonstrating again the quality of the partitioning process. The previous

remarks are also reflected in Fig.4, where the memory requirements, expressed in MBytes, are presented with
respect to the number of processors for each initial mesh. Again, the memory requirement expressed for the
357900 node mesh on the 32 and 64 node machine are only extrapolations, and as expected the computation
of the 2433280 edge mesh (see Table.3) could not be achieved on the 64 node machine.

Fig.5 depicts the overall performance with respect to the number of edges for the three possible con-
figurations of the machine (32, 64 and 128 processing nodes). As for the 32 and 64 node configuration,
the overall performance shows a rapid stall when the number of edges increases, confirming the increase of
communication time. In these cases, the results obtained with the largest number of edges correspond to
the aircraft configuration mesh, while the results of the second largest number of edges correspond to the
second largest M6 wing mesh, thus they may not reflect the real attainable performance. However, and as
a confirmation of the previous assumption, when these measures are performed with the 128 node machine,
the stall appears as well with the largest mesh which discretizes the same M6 wing.

The overall performance with respect to the value of the edge-ratio is depicted in Fig.6. The number of
MFlops is seen to be strongly related to the value of the edge-ratio. Since the edgejratio is more favorable, for
larger meshes and for a given geometry, the performance is better. The density of the mesh increases faster
than the number of cut edges per partition for a given geometry and the computation time predominates
the communication time thereby enhancing the performance. The importance of the value of this ratio is
well demonstrated with the 32 node machine. In this case the smallest value of the edgejratio corresponds
to the aircraft while the immediately greater corresponds to the second largest M6 wing. The performance
with the aircraft configuration mesh is about the same as that obtained with the second largest mesh over
the M6 wing, since they exhibit similar edgejratio. Yet, this trend seems to disappear when the size of the
machine increases: the inherent differences of both meshes are more apparent.

Fig.7 depicts the overall performance for each mesh with respect to the machine configuration. Except for
the largest mesh (computed only on the 128 node machine), the performance increases almost linearly with
the number of processing nodes. For each mesh, the curves are straight lines with a similar slope, proving
again the efficiency of the partitioner. The value of the performance obtained with the smallest mesh on the
64 and 128 node configuration may appear somehow suspicious. In fact, this result is to be expected, since
for such a mesh the communication time clearly dominates the computational time.

Finally, while the overall computational rates achieved appear to be rather low, the total time required to
obtain a solution is competitive with other unstructured mesh implementations [10, 6]. The simple structure
of this explicit algorithm results in alow number of operations for each individual loop. This leads to a high
communication/computation ratio on parallel machines, and thus to a low overall computational rate on the
CM-5. This is confirmed by the results obtained on the Delta machine [14]: the Delta machine provides
communication times smaller than the CM-5, while the CM-5 provides computational times smaller than

the Delta through the VU's.
An example of the solution computed over the ONERA M6 wing is depicted Fig.9.

5 CONCLUSION
In this work, it has been shown that the implementation of the 3D Euler solver did not pose any major prob-
lems on the CM-5 for the CM Fortran language is very similar for the experienced Fortran-77 programmer.
The set of utility subroutines found within the CMSSL library is mostly user-friendly and easy to implement.
However, CM Fortran is restrictive in terms of effectiveness. The main drawbacks are:

• Large memory requirements with respect to the size of the problem.

• Large amount of communication, degrading the overall performances to the detriment of rather excep-
tional pure computational performances.

• Poor communication bandwidth per processing node is not well suited for programs that perform a
large amount of inter-processor communication (gather/scatter).

The spectral mesh partitioner implemented in [6] resulted in largely improved solver performance. How-
ever, more efficient implementations of the solver and the partitioner demand a thorough understanding of
the computer architecture. The solver itself requires a large amount of communication which results in a low
overall performance. It is also shown that the communication rates are strongly related to the value of the
edge.ratio. Improvements could have been achieved either through faster communication rate or through a
memory extension of the processors that would allow one to employ larger meshes on the same number of
processors.

At last, in [11], the result of a message passing version of their code implemented on the CM-5 reports
an overall performance of 102 MFlops for a 786631 edge 2D mesh using 32 processing nodes. While this
rate is similar to that achieved in the present work, the former implementation was performed in Fortran-77
and does not make use of the vector units. A message-passing version written in CM Fortran, which would
enable the use of the vector units should provide better overall performance.

6 ACKNOWLEDGEMENTS
We warmly thank Zdenek Johan and Earl Renaud for their constant help with the CM Fortran version of
this code.

Our thanks extend to the team of Joel Saltz at the University of Maryland at College Park for providing
the CM-5 computer access.

Finally, this work completed the postdoctorate year of Eric Morano supported by INRIA, "Region
Provence Alpes Cote d'Azur" (FRANCE) and by ICASE (USA).

10

References
[1] E. Morano, M.H. Lallemand, M.P. Leclercq, H. Steve, B. Stoufflet, and A. Dervieux. Local iterative

upwind methods for steady compressible flows. In GMD-Studien Nr. 189, Multigrid Methods: Special
Topics and Applications II, 1991. Third Conference on Multigrid Methods, Bonn 1990.

[2] E. Morano and A. Dervieux. Looking for O(N) Navier-Stokes solutions on non-structured meshes. In
Sixth Copper Mountain Conference on Multigrid Methods, pages 449-463. NASA, 1993. NASA CP-3224,
Part 2.

[3] Thinking Machine Corporation. CM Fortran Utility Library Reference Manual, Version 2.0 Beta, 1993.

[4] Thinking Machine Corporation. CMSSL for CM Fortran: CM-5 Edition, Volumes I and II, Version 3.1
Beta 2, 1993.

[5] Thinking Machine Corporation. CM Fortran Reference Manual, Version 2.0 Beta, 1992.

[6] Z. Johan, K. Mathur, S. Johnsson, and T. Hughes. An efficient communication strategy for finite element
methods on the connection machine CM-5 system. Technical report, Thinking Machine Corporation,
1993. Submitted to Computational Methods in Applied Mechanics and Engineering.

[7] E. Morano and D. Mavriplis. Implementation of a parallel unstructured Euler solver on the CM5.
Technical Report 94-0755, AIAA, 1994. 32nd Aerospace Sciences Meeting k Exhibit, January 10-13,
Reno, Nevada, USA.

[8] V. Venkatakrishnan, H. Simon, and T. Barth. A MIMD implementation of a parallel Euler solver for
unstructured grids. The Journal of Supercomputing, 6:117-137, 1992.

[9] C. Farhat, L. Fezoui, and S. Lanteri. Two-dimensional viscous flow computations on the connection
machine: unstructured meshes, upwind schemes and massively parallel computations. Computational
Methods in Applied Mechanics and Engineering, 102:61-88, 1993.

[10] Z. Johan. Data parallel finite element technique for large-scale computational fluid dynamics. PhD
thesis, Stanford University, 1992.

[11] C. Farhat and S. Lanteri. Simulation of compressible viscous flows on a variety of mpps: Computational
algortihms for unstructured dynamic meshes and performance results. Technical Report 2154, INRIA,
1994.

[12] D. Mavriplis. Three dimensional unstructured multigrid for the Euler equations. Technical Report
91-1549CP, AIAA, 1991.

[13] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation of a
parallel unstructured Euler solver using software primitives. Technical Report 92-12, ICASE, 1992.

[14] D. Mavriplis. Implementation of a parallel unstructured Euler solver on shared and distributed memory
architectures. Technical Report 92-68, ICASE, 1992.

[15] Thinking Machines Corporation. CMSSL Release Notes, Preliminary Documentation for Version 3.2
Beta. 1993.

[16] A. Jameson. Numerical solution of the Euler equations for compressible inviscid fluids. In F. Angrand,
A. Dervieux, J.A. Desideri, and R. Glowinski, editors, Numerical Methods for the Euler Equations of
Fluid Dynamics, pages 199-245. SIAM, Philadelphia, 1985.

11

Configurations Nodes Edges Boundary Faces
ONERA M6 Wing 2800 17377 2004
ONERA M6 Wing 9428 59863 5864
ONERA M6 Wing 53961 353476 23108
ONERA M6 Wing 357900 2403874 91882

Aircraft 106064 697992 31886

Table 1: Test-case meshes.

Initial Meshes
(nodes/edges/b. faces)

Memory
(KBytes/VU)

CPU (sec
Partition_Mesh

)
Total

Edge-Ratio Final Meshes
(edges/b. faces)

B. Faces/Edges

(%)
2800/17377/2004 324 4.99 17.64 0.77 20480/5120 25.0
9428/59863/5864 604 13.39 51.01 0.43 66560/13312 20.0

53961/353476/23108 2552 78.00 274.63 0.20 360448/48128 13.35
106064/697992/31886 5020 214.80 577.43 0.16 707584/71680 10.13

A. Rule of 8.

Initial Meshes
(nodes/edges/b. faces)

Memory
(KBytes/VU)

CPU (sec
Partition_Mesh

)
Total

Edge-Ratio Final Meshes
(edges/b. faces)

B. Faces/Edges
(%)

2800/17377/2004 260 8.42 21.23 0.79 20480/5120 25.0
9428/59863/5864 408 20.34 57.96 0.43 67584/13312 19.69

53961/353476/23108 1644 127.06 320.83 0.20 360448/48128 13.35
106064/697992/31886 3260 367.73 729.78 0.16 707584/71680 10.13

B. Rule of 8 - Low Sto rage.

Initial Meshes
(nodes/edges/b. faces)

Memory
(KBytes/VU)

CPU (sec
Partition_Mesh

)
Total

Edge-Ratio Final Meshes
(edges/b. faces)

B. Faces/Edges
(%)

2800/17377/2004 192 4.63 17.48 0.80 18432/3968 21.52
9428/59863/5864 468 12.19 50.31 0.44 61696/11776 19.08

53961/353476/23108 2484 80.44 275.85 0.21 358144/49152 13.72
106064/697992/31886 4948 214.47 572.19 0.16 703104/71168 10.12

C. No Padding.

Initial Meshes
(edges/b. faces)

Memory
(KBytes/VU)

CPU (sec;
Partition_Mesh Total

Edge-Ratio Final Meshes
(edges/b. faces)

B. Faces/Edges
(%)

2800/17377/2004 128 6.45 19.36 0.78 18432/4096 22.22
9428/59863/5864 336 18.45 56.74 0.44 61696/11776 19.08

53961/353476/23108 1636 129.91 324.63 0.21 358272/49152 13.71
106064/697992/31886 3252 357.11 719.89 0.16 703744/70784 10.06

D. No Padding - Low Storage.

Table 2: Partitioner Execution Summary - 32 Processing Nodes.

12

2000

500000 le+06 1.5e+06 2e+06

Figure 2: Partitioner's Memory Requirements vs. the Number of Edges - 32 Processing Nodes.

Initial Meshes
(nodes/edges/b. faces)

2800/17377/2004
9428/59863/5864

53961/353476/23108
106064/697992/31886

357900/2403874/91882 *

Memory
(KBytes/VU)

160
300
1248
2476

5404

CPU (sec)
Partition-Mesh

3.83
8.82

49.01
128.05

759.95

Total
18.93
49.29
250.49
501.38

1994.20

Edge-Ratio

1.31
0.65
0.29
0.22

0.14

Final Meshes
(edges/b. faces)

18944/5120
62464/14080
361472/54016
707840/81664

2433280/234240

B. Faces/Edges

(%)
27.03
22.54
14.94
11.54

9.6

(*: low storage)

Table 3: Partitioner Execution Summary - No Padding - 64 Processing Nodes.

Initial Meshes
(nodes/edges/b. faces)

Memory
(KBytes/VU)

CPU (sec
Partition-Mesh

-)
Total

Edge-Ratio Final Meshes
(edges/b. faces)

B. Faces/Edges

(%)
2800/17377/2004 84 4.68 22.56 1.93 20992/6144 29.27

9428/59863/5864 184 8.28 53.98 0.91 66560/16384 24.61

53961/353476/23108 692 31.18 248.03 0.41 366592/62464 17.04

106064/697992/31886 1244 72.09 463.74 0.32 714752/123392 11.04

357900/2403874/91882 4140 265.50 1551.57 0.19 2448384/270336 17.26

Table 4: Partitioner Execution Summary - No Padding - 128 Processing Nodes.

13

Meshes Memory CPU 1 Iter (sec) MFlops
nodes/edges/b. faces KBytes/VU Computation Total

2800/17377/2004 160 0.022 1.104 13.15
9428/59863/5864 484 0.066 3.705 13.25

53961/353476/23108 2724 0.349 22.649 12.34
106064/697992/31886 5308 0.662 53.858 10.02

Table 5: Euler 3D Solver Execution Summary - Not Partitioned - No Padding - 32 Processing Nodes.

Meshes Memory CPU 1 Iter >ec) MFlops
nodes/edges/b. faces KBytes/VU Computation Total

2800/20480/5120 216 0.027 0.349 56.90
9428/66560/13312 524 0.078 0.782 77.19

53961/360448/48128 2384 0.379 2.937 104.31
106064/707584/71680 4416 0.714 5.173 112.38

A. Rule of 8.

Meshes Memory CPU 1 Iter 'sec) MFlops
nodes/edges/b. faces KBytes/VU Computation Total

2800/18432/3968 152 0.024 0.312 54.40
9428/61696/11776 452 0.072 0.724 76.72

53961/358144/49152 2320 0.380 2.896 105.51
106064/703104/71168 4412 0.711 5.403 106.92

B. No Padding.

Table 6: Euler 3D Solver Execution Summary - 32 Processing Nodes.

Meshes Memory CPU 1 Iter (sec) MFlops
nodes/edges/b. faces KBytes/VU Computation Total

2800/18944/5120 76 0.016 0.227 80.94
9428/62464/14080 232 0.039 0.482 120.59

53961/361472/54016 1240 0.202 1.712 182.32
106064/707840/81664 2308 0.366 3.076 191.88

357900/2433280/234240 NOT FEASIBLE: OUT OF MEMORY

Table 7: Euler 3D Solver Execution Summary - No Padding - 64 Processing Nodes.

Meshes Memory CPU 1 Iter ;sec) MFlops
nodes/edges/b. faces KBytes/VU Computation Total

2800/20992/6144 72 0.0111 0.181 114.65
9428/66560/16384 152 0.0235 0.309 203.79

53961/366592/62464 684 0.106 1.021 316.56
106064/714752/123392 1228 0.205 1.773 356.48

357900/2448384/270336 3868 0.622 4.859 417.76

Table 8: Euler 3D Solver Execution Summary - No Padding - 128 Processing Nodes.

14

Subroutine
STEP

DEFLUX (D)

DEFLUX (C)

PSMOO

MONITR

Loop Index
Edges

B. Faces
Nodes
Edges
Nodes
Edges

B. Faces
Edges
Nodes
Nodes

Gather (sec)
0.0687
0.0274

0.0798

0.0580

Computation (sec)
0.0125
0.0061
0.0003
0.0292
0.0011
0.0135
0.0087
0.0065
0.0013
0.0024

MFlops (C)
688
480
355
764
228
1332
771
551
585
218

Total (sec) MFlops (T)
0.0978
0.0391

0.2234

0.1034
0.0354
0.3589

Table 9: 1 Iteration, Routine by Routine, Solver's Execution Summary.

96
78

122

209
216
40

500000 le+06 1.5e+06 2e+06

Figure 3: Solver's Memory Requirements vs. the Number of Edges.

15

20001-

1782
2800 Node Mesh
9428 Node Mesh
53961 Node Mesh
106064 Node Mesh
357900 Node Mesh

Figure 4: Solver's Memory Requirements vs. the Number of Processing Nodes.

en a o
E

400

 1 1 i r

32 Processing Nodes -*-
64 Processing Nodes ■■*■-
128 Processing Nodes ■■••■

■ ■

300 -
.■■•*"

■

200 V
y

■

100
**^

n
Number of Edges

 -> " " L.

500000 le+06 l.5e+06 2e+06

Figure 5: Solver's Overall Performance vs. the Number of Edges.

16

400

300

200

100

32 Processing Nodes
64 Processing Nodes
128 Processing Nodes

Edge_Ratio

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6: Solver's Overall Performance vs. the Value of the edge-ratio.

400 ■

300

200

100

0
0

2800 Node Mesh -*-
9824 Node Mesh
53961 Node Mesh ■■»■■
106064 Node Mesh ■•■•*•»
357900 Node Mesh A

Number of Processing Nodes

32 64 128

Figure 7: Solver's Overall Performance vs. the Number of Processing Nodes.

17

^

<

Mesh 1: 2800 Nodes.

Mesh 2: 9428 Nodes.

18

Mesh 3: 53961 Nodes.

Mesh 4: 357900 Nodes.

Figure 8: Sequence of Meshes Employed for Computing Inviscid Transonic Flow over the ONERA

M6 Wing.

19

Figure 9: Computed Mach Contours over the 357900 Node ONERA M6 Wing.

Figure 10: 106064 Node Mesh of a 3D Aircraft Configuration.

20

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, includingthe time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONVf (Leave blank) 2. REPORT DATE

March 1995
3. REPORT TYPE AND DATES COVERED

Contractor Report

TITLE AND SUBTITLE

IMPLEMENTATION OF A PARALLEL UNSTRUCTURED
EULER SOLVER ON THE CM-5

6. AUTHOR(S)

E. Morano
D. J. Mavriplis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science
and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NASl-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 95-16

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-195056
ICASE Report No. 95-16

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushneil
Final Report
To be submitted to the International Journal of Computational Fluid Dynamics

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5,
distributed memory computer with vectorizing capability. In this paper, the SIMD strategy is employed through the
use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner
is evaluated and the overall efficiency of the parallel flow solver is discussed.

14. SUBJECT TERMS
CM-5: Parallel; SIMD; CMF; CMSSL; Unstructured; 3D Euler

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

22

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

